Control Systems

1. The transfer function of second order real system with a perfect flat magnitude response of a unity has a pole at (2 - i3). List all the poles and zeroes.

- (a) Poles at $(2 \pm i3)$, no zeroes
- (b) Poles at $(\pm 2 i3)$, one zero at origin
- (c) Poles at (2-j3), (-2+j3), zeroes at (-2-j3), (2+j3)
- (d) Poles at $(2 \pm j3)$, zeroes at $(-2 \pm j3)$

2. For the system governed by the set of equations $\frac{dx_1}{dt} = 2x_1 + x_2 + u$, $\frac{dx_2}{dt} = -2x_1 + u$ and $y = 3x_1$.

Then transfer function $\frac{Y(s)}{U(s)}$ is given by

(a)
$$\frac{3(s+1)}{s^2-2s+2}$$

(b) $\frac{3(2s+1)}{s^2-2s+1}$

(c)
$$\frac{(s+1)}{s^2-2s+1}$$

(d) $\frac{3(2s+1)}{s^2-2s+2}$

3. The polar plot of $\frac{1}{s^3(s+5)(s+20)}$ will intersect the real axis at

(a)
$$\omega = 5 \text{ rad/s}$$

(c)
$$\omega = 20 \text{ rad/s}$$

(b)
$$\omega = 10 \text{ rad/s}$$

(d)
$$\omega = 100 \text{ rad/s}$$

4. The phase margin of system with OLTF G(s)H(s) = $\frac{\pi e^{-s}}{s}$

(a)
$$0^{\circ}$$

(b)
$$-90^{\circ}$$

$$(c) 90^{\circ}$$

(d) None

5. The Bode plot of a unity Negative feedback system is as shown. The system has

- (a) +ve P.M. & -ve G.M.
- (b) +ve P.M. & +ve G.M.
- (c) -ve P.M. & -ve G.M.
- (d) -ve P.M. & +ve G.M.

6. A system is described by the following equations having unity –ve feedback

$$A = \begin{bmatrix} 0 & 1 \\ -3 & -6 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} & C = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

The steady state error for unit step input is

(a) $\frac{2}{3}$

(c) ∞

(b) $\frac{1}{2}$

(d) 0

7. Which of the following is the transfer function of a load compensation network

(c) $\frac{s(s+5)}{s+8}$ (d) $\frac{s+8}{s(s+6)}$

(b) $\frac{s+8}{s+5}$

8. The Nyquist plot of system having OLTF G(S)H(S) = 1000

Control Systems

9. For the OLTF $h(j\omega) = 4 + j\omega$, the corresponding Nyquist plot for the +ve frequency has the form

10. In the system shown in figure, the input $x(t) = \sin t$. The response y(t) will be

$$(a) \ \frac{1}{\sqrt{2}} sin(t-45^\circ)$$

(c)
$$\sin(t-45^{\circ})$$

(b)
$$\frac{1}{\sqrt{2}}\sin(t + 45^{\circ})$$

(d)
$$\sin(t + 45^{\circ})$$

11. The steady state error of given control system is _____?

- 12. For a second order system overshoot = 10% and peak t_p = 5 sec. Then the value of damping factor is _____?
- 13. The forward path gain of unity feedback system is $G(S) = \frac{10(1+4S)}{S^2(1+S)}$. If the system is subjected to an input $r(t) = 1 + t + \frac{t^2}{2}$, t > 0, the steady state error of the system will be ______%? 14.

Then
$$\frac{C(S)}{R(S)} = ?$$

(a) $\frac{2S(S+1)}{2S^2+3S+5}$

(b) $\frac{2S(2S+1)}{4S^2+13S+5}$

Control Systems

		·				
===	(c) $\frac{2S(2S+1)}{2S^2+2S+5}$	===========	$(d) \frac{3S(2S-1)}{4S^2+13S+1}$	 -	:==	
15	23 73373	avatam ia C3 + 10C2	10 11001	O .	value et	f V ac
13.	The characteristic equation of a system is $S^3 + 10S^2 + 18S + K = 0$. What is the value of K so that the roots of observatoristics equation lies to the left of line					
	that the roots of characteristics equation lies to the left of line $S = -1$ is?					
16.	An open loop system having OL	Γ F is $G(S)H(S) = \frac{1}{(S+1)^n}$	$\frac{S-1}{+2)(S+3)}$ is			
	(a) Stable & of the minimum pha(b) Stable & of the non-minimum(c) Unstable & of the minimum(d) Unstable & of the non-minimum	n phase type bhase type um phase type				
17.	For polynomial $q(s) = S^5 + S^4$	$+2S^3 + 2S^2 + 3S +$	15. The number	er of roots wh	nich lies	in the
	right half of the s-plane is					
18.	The compensator $G_c(S) = \frac{5(1+0.3)}{1+0.1}$	s) would provide min	nimum phase sł	nift of		
	(a) 30° (b) 4	.5°	$(c) 60^{\circ}$		(d) 120	o
19.	The state transition matrix $\phi(t)$	of system $\begin{bmatrix} \dot{\mathbf{X}}_1 \\ \dot{\mathbf{X}}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ is			
	(a) $\begin{bmatrix} t & 1 \\ 1 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} t & 1 \\ t & 0 \end{bmatrix}$	· · ·	_ •		(d) $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1-
20.	The second order dynamic s					
	$P = \begin{bmatrix} -1 & 1 \\ 0 & -3 \end{bmatrix}$, $Q = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $R = \begin{bmatrix} 0 & 1 \end{bmatrix}$. The system has the following controllability and					
	observability properties.		(a) Controlle	abla but nat ab	gowyoblo	
	(a) Controllable & observable(b) Not Controllable but observa	(c) Controllable but not observable(d) Not controllable & not observable				
21						
21.	Consider an LIT with transfer function $\frac{C(S)}{R(S)} = H(S) = \frac{1}{S(S+4)}$, If input to the system is correct and					
	the steady state output is A Sin (3	$3t + \alpha$), then the valu				
	(a) $\frac{1}{30}$ & 36°.86°		(c) $\frac{3}{4}$ & 53°.			
	(b) $\frac{1}{15}$ & 36°.86°		(d) $\frac{3}{4}$ & 53°.	13°		
22.	A stable LTI system has transfer function $H(S) = \frac{1}{S^2 + S - 6}$. To make this system casual it needs to					
	be cascaded function with another LTI system having a transfer function H ₁ (S) is					
	(a) $S+3$ (b) S	5-2	(c) S-6		(d) S+1	
23.	The OLTF of a unity –ve feedback is $G(S)H(S) = \frac{10(S+1)}{S(S-3)}$. The unit step response is					
	(a) $1 + 1.67e^{-2t} + 2.67e^{-5t}$ (c) $1 - 1.67e^{-2t} - 2.67e^{-5t}$					
				$1 - 1.67e^{-2t} + 2.67e^{-5t}$		
24.	Which one of the following system	m produces undampe	ed oscillation?			
	(a) $\frac{1}{S(S+2)}$ (b) $\frac{1}{(}$	$\frac{1}{(S+1)^2}$	(c) $\frac{1}{S(S+5)^2}$		(d) $\frac{1}{S^2+2}$	20
25.	The location of closed loop pole	s of the 2 nd order sys	tem is -3.535 +	- j 3.535 peak 1	time (t _p)	of the

system (in sec) is _____

26. The given system is

Control Systems

(a) Stable

(c) Marginally stable

(b) Unstable

- (d) None of the above
- 27. The OLTF of the system $G(S)H(S) = \frac{K(S+3)}{S(S+2)}$ is

the center and the radius of the circle

in root locus is _____?

(a)
$$(-3,0) \& \sqrt{3}$$

(c)
$$(-3,0) \& \sqrt{5}$$

(b)
$$(-5,0) \& \sqrt{3}$$

(d)
$$(-3,0) \& \sqrt{10}$$

28. The OLTF of unity –ve feedback system is $G(S)H(S) = \frac{K}{S(S+4)(S+5)}$. The j ω crossover frequency

is

(a)
$$\sqrt{5}$$
 rad/s

(b)
$$2\sqrt{5}$$
 rad/s

29. The bode plot for transfer function is given below. The value of gain parameter K is?

(a) 100

(b)
$$\frac{1}{100}$$

(d) $\frac{1}{101}$

30. For the given system the state space equation is $\dot{x} = Ax + Bu$ the matrix A is

(a)
$$\begin{bmatrix} 0 & 1 & -4 \\ 1 & 0 & 0 \\ -3 & 0 & 0 \end{bmatrix}$$

(c)
$$\begin{bmatrix} -4 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -3 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 0 & -1 & 4 \\ -1 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$$

(d)
$$\begin{vmatrix} 4 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 3 \end{vmatrix}$$